einheitsmatrix - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

einheitsmatrix - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Inverse Matrix: so kann man eine Matrix invertieren | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 6 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 4 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 3 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 1 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 5 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 2 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Leontief, Leontief-Formel y=(E–A)·x: leichte Übung | M.06.02
Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...
Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil b | M.06.02
Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...
Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil a | M.06.02
Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...