Winkelhalbierenden - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Winkelhalbierenden - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Konstruktion der Winkelhalbierenden
Auf dieser Seite des Landesbildungsservers Baden-Württemberg wird anhand einer Geogebra-Animation die Konstruktion der Winkelhalbierenden erläutert.
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Ankreis (Mathematik)
Der Inkreis eines Dreiecks, ist der Kreis, der alle Seiten von innen genau einmal berührt. Alle Seiten sind also Tangenten des Inkreises. Sein Mittelpunkt ist der Schnittpunkt der Winkelhalbierenden.
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 6 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 7 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 5 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 3 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 8 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 4 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 2 | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)