Winkelhalbierende - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Winkelhalbierende - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Winkelhalbierende (Mathematik)
Die Winkelhalbierende eines Winkels ist ein Strahl, der im Scheitelpunkt eines Winkels entspringt und den Winkel in zwei gleiche Teile teilt.
Winkelhalbierende konstruieren
Mit diesem Arbeitsblatt lernen die Schülerinnen und Schüler, wie man die Winkelhalbierende sowohl mit Zirkel und Lineal als auch mit GeoGebra konstruiert und damit Aufgaben aus der Praxis lösen kann. Vertieft werden diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Anwendungsaufgaben.
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 4 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 2 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 3 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
DynaGeo: Dreieckskonstruktion
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
DynaGeo: "Umkehrungen" der trigonometrischen Funktion
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
DynaGeo: Knobelaufgabe: Halbierter Rechter
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.