Tschebyscheff - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Tschebyscheff - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Tschebyscheff-Ungleichung, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.07
Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).
Tschebyscheff-Ungleichung, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.07
Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).
Tschebyscheff-Ungleichung | Wahrscheinlichkeitsrechnung Formeln W.15.07
Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).
Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07
Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).
Binomialverteilung (Ziehen mit Zurücklegen): was ist das? Wie rechnet man damit richtig? | W.16
Die Binomialverteilung gehört zu den wichtigsten Verteilungen der Wahrscheinlichkeitsrechnung. Man wendet sie an, wenn es nur zwei möglichen Ausgänge gibt und wenn sich die Wahrscheinlichkeit nie ändert (also bei Ziehen mit Zurücklegen). Man berechnet mit ihr die W.S. eine ganz bestimmte Anzahl von Treffern zu erzielen. (Die Anzahl der Treffer muss ganzzahlig sein, es ...