Trigonometrische Gleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Video: Lösen einer trigonometrischen Gleichung mittels Substitution
In diesem Video von chemnitz-tutor.de wird ausführlich eine trigonometrische Gleichung gelöst, die durch Substitution auf eine Quadratische Gleichung führt. Diese Technik muss bei vielen trigonometrischen Gleichungen angewandt werden.
Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Komplizierte trigonometrische Funktion ableiten, Beispiel 2 | A.42.05
Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wirds manchmal etwas hässlicher.
Komplizierte trigonometrische Funktion ableiten, Beispiel 4 | A.42.05
Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wirds manchmal etwas hässlicher.
Komplizierte trigonometrische Funktion ableiten, Beispiel 1 | A.42.05
Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wirds manchmal etwas hässlicher.
Komplizierte trigonometrische Funktion ableiten, Beispiel 3 | A.42.05
Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wirds manchmal etwas hässlicher.
Quelle
Systematik
- Mathematik (66)
- Mathematisch-Naturwissenschaftliche Fächer (66)
- Algebra / Funktionen (5)
- Exponentialfunktionen, Logarithmusfunktionen (3)
- Trigonometrische Funktionen (3)
- Zuordnungen, Funktionen (3)
- Exponentialgleichungen (2)
Schlagwörter
- Video (62)
- Gleichung (Mathematik) (60)
- Funktion (Mathematik) (60)
- E-Learning (60)
- Analysis (60)
- Kosinus (59)
- Sinus (59)