Suche nach Tetraeder - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (13)
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 2 | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Volumen dreiseitige Pyramide berechnen, Beispiel 3 | V.07.03
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...
Volumen dreiseitige Pyramide berechnen | V.07.03
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...
Faltgeometrie- Falten als Zugang zum Geometrieunterricht
Die Kunst des Papierfaltens ist nicht nur was für Origami-Anhänger! Durch diese entdeckende und konstruierende Arbeitsform lässt sich jeder Mathematik- und Geometrieunterricht im Nu lebendig gestalten. Auf der schweizerischen Website www.faltgeometrie.ch wird es uns vorgemacht.Die so oft als abstrakt empfundene Materie wird den Lernenden praxisnah und spielerisch ...
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 1 | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Volumen dreiseitige Pyramide berechnen, Beispiel 1 | V.07.03
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (13)
- Mathematik (12)
- Geometrie (2)
- Regelmäßige Polyeder (1)
- Geometrische Grundkonstruktionen (1)
- Unser Sonnensystem (1)
- Winkel, Verschiebung, Spiegelung, Drehung (1)
Schlagwörter
- Tetraeder (10)
- Volumen Dreiseitige Pyramide (4)
- Dreiseitige Pyramide (4)
- Spatprodukt (4)
- Kreuzprodukt (4)
- Volumen (4)
- Geometrieunterricht (2)