Stereometrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Stereometrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Mathe-Werkstatt
Homepage für Mathematik-Lehrer von einem Mathematik-Lehrer mit Überlegungen und Links zu Themen wie Ebene Geometrie, Raumgeometrie, Fraktale, Computeralgebra, Tabellenkalkulation, Analysis, Lineare Algebra, Abitur, Allgemeinbildung, Facharbeiten, Wettbewerbe, Lesetipps, Unmögliche Figuren, Humor, Didaktik, Lehrerfortbildung, Koedukation, Dyskalkulie und ...
Gravitationswellen - Hintergrundinformationen und Filme
Laut Einsteins Allgemeiner Relativitätstheorie sind sie so gut wie unausweichlich, wenn Massen beschleunigt werden: Gravitationswellen, winzige Verzerrungen der Raumgeometrie, die sich mit Lichtgeschwindigkeit durch das All ausbreiten.; Lernressourcentyp: Lernmaterial; Animation; Unterrichtsidee; Mindestalter: 15; Höchstalter: 18
HTML5-Apps zur Mathematik
Arithmetik, ebene Geometrie, Raumgeometrie, Kugelgeometrie, Trigonometrie, Vektorrechnung, analytische Geometrie
Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 1 | T.06.10
Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.
Trigonometrie | Stereometrie
Die Trigonometrie befasst sich mit der Berechnung von Längen und Winkeln in der Ebene (daher heißt die Trigonometrie auch „Planimetrie“). Üblicherweise erfolgen diese Berechnung mit Hilfe des Satzes von Pythagoras, mit Sinus, Kosinus (teils auch Cosinus), Tangens und anderen trigonometrischen Hilfsmitteln. Eine Einführung.
Quadratische Pyramide berechnen, Beispiel 3 | T.06.04
Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h
Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 2 | T.06.10
Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.
Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10
Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quadratische Pyramide berechnen | T.06.04
Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h