Stereometrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mathe-Werkstatt
Homepage für Mathematik-Lehrer von einem Mathematik-Lehrer mit Überlegungen und Links zu Themen wie Ebene Geometrie, Raumgeometrie, Fraktale, Computeralgebra, Tabellenkalkulation, Analysis, Lineare Algebra, Abitur, Allgemeinbildung, Facharbeiten, Wettbewerbe, Lesetipps, Unmögliche Figuren, Humor, Didaktik, Lehrerfortbildung, Koedukation, Dyskalkulie und ...
Gravitationswellen - Hintergrundinformationen und Filme
Laut Einsteins Allgemeiner Relativitätstheorie sind sie so gut wie unausweichlich, wenn Massen beschleunigt werden: Gravitationswellen, winzige Verzerrungen der Raumgeometrie, die sich mit Lichtgeschwindigkeit durch das All ausbreiten.; Lernressourcentyp: Lernmaterial; Animation; Unterrichtsidee; Mindestalter: 15; Höchstalter: 18
Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 1 | T.06.10
Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 1 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 3 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quelle
Systematik
- Mathematik (70)
- Mathematisch-Naturwissenschaftliche Fächer (69)
- Geometrie (2)
- Grundschule (2)
- Analysis, Analytische Geometrie (1)
- Zahlen, Algebra (1)
- Physik (1)
Schlagwörter
- Winkelfunktion (19)
- Hypotenuse (14)
- Mantelfläche (12)
- Gegenkathete (10)
- Ankathete (10)
- Winkel Berechnen (9)
- Winkelberechnung (9)


