Rechenoperationen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Rechenoperationen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Matrizen und Lineares Gleichungssystem: welche Rechenoperationen es gibt | M.03
Mit Matrizen kann man die verschiedensten Rechnungen anstellen. Die häufigsten Rechenoperationen sind die Matrizenmultiplikation, das Invertieren von Matrizen (Inverse berechnen), das Transponieren von Matrizen und Lösen von Matrizengleichungen. Diese vier Operationen erläutern wir in den folgenden Kapiteln.
Online-Medien zu Mathematik (Optische Hilfen) (1. / 2. Schuljahr)
Die angebotenen Hilfsmittel sind interaktiv bedienbar und ermöglichen es, Mengen und kleine Rechenoperationen zu veranschaulichen.
Flip the Classroom: Vektoren
In diesem Video von Flip the Classroom wird der Vektorbegriff, seine geometrischen Interpretationen und Rechenoperationen wie die Vektoraddition, die Vektorsubtraktion und die skalare Multiplikation sehr anschaulich und mit typischen Aufgaben erklärt.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 3 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 2 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 1 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Rechnen im Zahlenraum bis 20: Zwergen- und Riesen-Aufgaben
Dieses Material zum Thema "Zwergen- und Riesen-Aufgaben" fokussiert die Analogien zwischen additiven Rechenoperationen im Zahlenraum bis 20. Es legt den Schülerinnen und Schülern auf spielerische Weise die Analogien zwischen Aufgaben im erweiterten Zahlenraum dar.
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 1 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 2 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...