Quotientenregel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 4 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u134
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 2 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u132
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 5 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u135
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 3 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u133
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 6 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u136
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 1 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u131
Quotientenregel
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle geht es um die Quotientenregel.
Quelle
Systematik
- Mathematik (41)
- Mathematisch-Naturwissenschaftliche Fächer (41)
- Analysis, Analytische Geometrie (2)
- Zuordnungen, Funktionen (2)
- Differentialrechnung (1)
- Analytische Geometrie (1)
Schlagwörter
- Analysis (39)
- Ableitung (38)
- Funktion (Mathematik) (36)
- Video (36)
- E-Learning (36)
- Quotientenregel (26)
- Kettenregel (22)