Quotientenregel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Quotientenregel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Quotientenregel (Mathematik)
Die Quotientenregel bietet eine Möglichkeit, die Ableitung eines Quotienten zweier differenzierbarer Funktionen u und v zu berechnen.
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 2 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u132
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 5 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u135
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 1 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u131
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 3 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u133
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 6 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u136
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 4 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u134
Ableitung von komplizierten Logarithmusfunktionen, Beispiel 2 | A.44.03
Für besonders hässliche Ableitung braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer geht’s immer.
Ableitung von komplizierten gebrochen-rationalen Funktionen / Bruchfunktion | A.43.03
Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.