Potenzieren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Komplexe Zahlen potenzieren, Beispiel 2 | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist n. Der Betrag der neuen ...
Komplexe Zahlen potenzieren, Beispiel 3 | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist n. Der Betrag der neuen ...
Komplexe Zahlen potenzieren, Beispiel 1 | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist n. Der Betrag der neuen ...
Komplexe Zahlen potenzieren, Beispiel 4 | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist n. Der Betrag der neuen ...
Komplexe Zahlen potenzieren | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ...
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 3 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Quelle
Systematik
- Mathematik (12)
- Mathematisch-Naturwissenschaftliche Fächer (12)
- Fachdidaktik (2)
- Grundschule (2)
- Gemeinschaft (1)
- Religiöse Lebensgestaltung (1)
- Formen der Weltauffassung, Religion (1)