Poisson-Verteilung aufgaben - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Poisson-Verteilung Beispiel Stau-Problem | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wirds natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem, Teil 2 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wirds natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem, Teil 3 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wirds natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem, Teil 1 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wirds natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 1
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 3
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 2
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette | W.14.01
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Urnenmodell: Ziehen mit Zurücklegen, Ziehen ohne Zurücklegen | W.14.04
Es gibt wohl KEINE Prüfungsaufgabe, in welcher nicht irgendwelches Zeug (Kugeln, Obst, ) von irgendwo rausgeholt wird. Im Prinzip sind das alles Aufgaben zum sogenannten Urnenmodell. Aus einer Urne werden Kugeln entnommen. Man kann nun die Kugeln mit Zurücklegen entnehmen (d.h. jedes Mal hat man die gleiche Ausgangssituation) oder man die Kugeln ohne Zurücklegen entnehmen ...
Urnenmodell: Ziehen mit Zurücklegen, Ziehen ohne Zurücklegen; Beispiel 3 | W.14.04
Es gibt wohl KEINE Prüfungsaufgabe, in welcher nicht irgendwelches Zeug (Kugeln, Obst, ) von irgendwo rausgeholt wird. Im Prinzip sind das alles Aufgaben zum sogenannten Urnenmodell. Aus einer Urne werden Kugeln entnommen. Man kann nun die Kugeln mit Zurücklegen entnehmen (d.h. jedes Mal hat man die gleiche Ausgangssituation) oder man die Kugeln ohne Zurücklegen entnehmen ...
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (14)
- Mathematik (12)
- Allgemeine Chemie (2)
- Chemie (2)
- Schulstatistik (1)
- Sonstige Fachunabhängige Bildungsthemen (1)
- Fachunabhängige Bildungsthemen (1)
Schlagwörter
- Ziehen mit Zurücklegen (4)
- Urne (4)
- Urnenmodell (4)
- Bernoulliverteilung (4)
- Bernoullikette (4)
- Bernoulli-Experiment (4)
- Bernoulli (4)