Parallelität - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Parallelität - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Parallelität von Geraden | A.02.06
Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.
Parallelität von Geraden, Beispiel 2 | A.02.06
Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.
Parallelität von Geraden, Beispiel 4 | A.02.06
Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.
Parallelität von Geraden
Parallelität ist eine besondere Lagebeziehung zwischen zwei Geraden. Zwei Graden sind genau dann parallel, wenn sie sich nicht schneiden.
Parallelität von Geraden, Beispiel 3 | A.02.06
Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.
Parallelität von Geraden, Beispiel 1 | A.02.06
Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.
Lage von Geraden im IR³
Die Schülerinnen und Schüler erarbeiten sich selbstständig mithilfe eines YouTube-Videos die Lagebeziehungen von Geraden im Raum. Im Anschluss vertiefen sie ihr Wissen anhand von Lasern in einer anwendungsorientierten Aufgabe sowie durch einen abschließenden KI-Check.