Normalform - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Gleichungen auf Normalform bringen, Beispiel 6 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Gleichungen auf Normalform bringen, Beispiel 2 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Gleichungen auf Normalform bringen, Beispiel 1 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Gleichungen auf Normalform bringen, Beispiel 8 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Gleichungen auf Normalform bringen, Beispiel 7 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Normalform einer Parabel aus Scheitelform bestimmen, Beispiel 2 | A.04.05
Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die ...
Quelle
- Bildungsmediathek NRW (89)
- Sächsischer Bildungsserver (1)
- Lehrer-Online (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematik (91)
- Mathematisch-Naturwissenschaftliche Fächer (90)
- Grundschule (2)
- Geometrie (1)
- Fachdidaktik (1)
- Zahlen (1)
- Fächerübergreifende Themen (1)
Schlagwörter
- E-Learning (79)
- Video (79)
- Formel (Mathematik) (59)
- Koordinate (57)
- Parabel (Mathematik) (50)
- Analysis (50)
- Gleichung (Mathematik) (45)