Neigungswinkel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Winkel und Schnittwinkel berechnen | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 6 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 4 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 1 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 5 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 3 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Winkel und Schnittwinkel berechnen, Beispiel 2 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Trigonometrie am Dach
In der Unterrichtseinheit für das Fach Mathematik der Klassen 710 aus dem Themenfeld Trigonometrie erörtern die Schülerinnen und Schüler die Begriffe und Eigenschaften von Sinus, Kosinus und Tangens für Berechnungen am Dreieck. Auf drei Arbeitsblättern für unterschiedliche Lernniveaus berechnen sie selbstgesteuert Winkel und Seiten von Dreiecken.
Quelle
Systematik
- Mathematik (8)
- Mathematisch-Naturwissenschaftliche Fächer (8)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Fachdidaktik (1)
- Grundschule (1)
Schlagwörter
- Winkelberechnung (8)
- Neigungswinkel (7)
- Schnittwinkel (7)
- Winkel (7)
- Nicht-Rechtwinklige Dreiecke (1)
- Dachformen (1)
- Rechtwinklige Dreiecke (1)


