Matrizen multiplizieren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 3 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 4 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 1 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 5 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Matrixmultiplikation: so kann man Matrizen multiplizieren, Beispiel 2 | M.03.01
Man multipliziert zwei Matrizen nach einer festgelegten Regel. Von der ersten Matrix betrachtet man immer die Zeilen, von der zweiten Matrix betrachtet man immer die Spalten. Nun multipliziert man alle Zahlen der Zeilen von ersten Matrix mit sämtlichen Zahlen von den Spalten der zweiten Matrix. Das Ergebnis ist eine Zahl, die an eine ganz bestimmte Stelle der Ergebnismatrix ...
Inverse Matrix: so kann man eine Matrix invertieren | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 6 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 5 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 1 | M.03.03
Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...
Quelle
Systematik
Schlagwörter
- Einheitsmatrix (7)
- Matrizen Invertieren (7)
- Matrix Invertieren (7)
- Inverse Matrix (7)
- Matrixmultiplikation (6)
- Matrizen Multiplizieren (6)
- Matrizenmultiplikation (6)