Matrix unbekannte - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 3 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 1 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: schwierige Matrix mit Parameter lösen, Beispiel 1 | M.02.08
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 2 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Quelle
Systematik
Schlagwörter
- Mehrdeutig Lösbar (11)
- Eindeutig Lösbar (8)
- Matrix (7)
- Matrizen Berechnen (5)
- Matrix Berechnen (5)
- Matrizen Lösen (5)
- Matrix Lösen (5)