Linearfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Linearfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 1 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 2 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 3 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 3 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 2 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 1 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Ganzrationale Funktionen: kurze Einführung | A.46
Den Hauptteil von ganzrationalen Funktionen (=Parabeln) haben wir ersten Themenbereich behandelt „Analysis 1“. In diesem Hauptkapitel behandeln wir nur ein paar Besonderheiten davon. Wir stellen Polynome über diverse Bedingungen auf, zerlegen sie in Linearfaktoren, bestimmen Nullstellen über Polynomdivision oder Horner-Schema.
Quadratische Gleichungen mit der Form ax²+bx=0 lösen | G.04.04
Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...