Linearfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Linearfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Mit Linearfaktoren quadratische Gleichungen lösen | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 2 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 3 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 1 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 3 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 1 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 2 | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Normalform einer Parabel aus Linearfaktorform LFF bestimmen | A.04.07
Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).
Ganzrationale Funktionen: kurze Einführung | A.46
Den Hauptteil von ganzrationalen Funktionen (=Parabeln) haben wir ersten Themenbereich behandelt „Analysis 1“. In diesem Hauptkapitel behandeln wir nur ein paar Besonderheiten davon. Wir stellen Polynome über diverse Bedingungen auf, zerlegen sie in Linearfaktoren, bestimmen Nullstellen über Polynomdivision oder Horner-Schema.
Linearfaktorzerlegung, Beispiel 2 | A.46.03
Linearfaktoren sind Klammern, die mit „mal“ verbunden sind. In den Klammern darf „x“ keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...