Lineare f - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lineare f - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernpfad: Lineare Funktion f: y=k·x+d
Übersicht Gleichung - Graph k und d Spurpunkte Konstruktion mit k und d mit Spurpunkten Aufgaben Graph - Gleichung Steigungsdreieck Spurpunkte Teste dich selbst! Ordne zu! Quiz 1 Quiz 2 Beweis Präsentation
Lernvideo: Exponentialgleichungen und die Ableitung von f(x)=a^x
In diesem Lernvideo von Flip the Classroom werden zunächst einfache Exponentialgleichungen gelöst und ganz viele Tricks und Tipps erarbeitet.  Am Videoende wird die Ableitung von f(x)= ax behandelt.
Exponentialfunktion integrieren bzw. aufleiten, Beispiel 3 | A.41.05
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...
Exponentialfunktion integrieren bzw. aufleiten | A.41.05
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...
Exponentialfunktion integrieren bzw. aufleiten, Beispiel 1 | A.41.05
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...
Trigonometrische Funktionen integrieren bzw. aufleiten | A.42.06
Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion integrieren bzw. aufleiten, Beispiel 2 | A.41.05
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...
Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.42.06
Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...
Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.42.06
Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...
Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 4 | A.42.06
Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...