Krümmung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Krümmung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) | A.11.03
Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...
Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 1 | A.11.03
Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...
Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 3 | A.11.03
Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...
Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 4 | A.11.03
Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...
Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 2 | A.11.03
Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...
Krümmung eines Funktionsgraphen
Meist interessiert man sich für die Krümmung bestimmter Abschnitte des Graphen. Dazu betrachtet man die zweite Ableitung.
Experimente zur raumzeitlichen Krümmung mit Alltagsgegenständen
Viele Gegenstände aus dem Alltag eignen sich zur Darstellung der allgemeinen Relativitätstheorie oder Kosmologie. Im WIS-Beitrag finden sie eine Einkaufsliste und eine Anleitung, wie sie mit Gummibändern, Luftballons und verschiedenen Metermaßen raumzeitliche und räumliche Krümmung, sowie Abstandsmaße in Experimenten mit ihren Schülern richtig ...
Wendepunkt
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier erfahren Lehrer und Schüler, wann eine Wendepunkt vorliegt und wie man ihn berechnet.
Was bedeuten eigentlich die Funktionen in der Analysis? | A.11
In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man „x“ einsetzt erhält man verschiedene anschauliche Bedeutungen.