Kosinus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01
Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...
So leitet man vermischte Funktionen ab, Beispiel 8 | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome (normale Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.
So leitet man vermischte Funktionen ab, Beispiel 7 | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome (normale Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.
Quelle
- Bildungsmediathek NRW (124)
- Deutscher Bildungsserver (3)
- Lehrer-Online (2)
- Bildungsserver Hessen (2)
- Handwerk macht Schule (1)
Systematik
- Mathematik (132)
- Mathematisch-Naturwissenschaftliche Fächer (131)
- Geometrie (13)
- Grundschule (4)
- Fächerübergreifende Themen (3)
- Zahlen (3)
- Fachdidaktik (3)
Schlagwörter
- Kosinus (104)
- Sinus (99)
- Winkelfunktion (96)
- Funktion (Mathematik) (87)
- Video (87)
- E-Learning (87)
- Analysis (83)