Konstante Zunahme - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Konstante Zunahme - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lineares Wachstum berechnen, Beispiel 2 | A.07.01
Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...
Lineares Wachstum berechnen, Beispiel 1 | A.07.01
Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...
Lineares Wachstum berechnen, Beispiel 3 | A.07.01
Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...
Lineares Wachstum berechnen | A.07.01
Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben „y=m*x+b“, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit ...
Exponentielles Wachstum berechnen | A.07.02
Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*b^x beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...
Exponentielles Wachstum berechnen, Beispiel 3 | A.07.02
Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...
Exponentielles Wachstum berechnen, Beispiel 2 | A.07.02
Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...
Exponentielles Wachstum berechnen, Beispiel 1 | A.07.02
Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...