Keplersche Fassregel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mit Keplersche Fassregel Flächeninhalt bestimmen | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 1 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 2 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 3 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Kepler, Johannes
Friedrich Johannes Kepler war ein deutscher Naturphilosoph, Mathematiker, Astronom, Astrologe und Optiker.Er entdeckte die Gesetze der Planetenbewegung, die nach ihm Keplersche Gesetze genannt werden. In der Mathematik wurde die approximative Berechnung von numerischen Integralen nach ihm Keplersche Fassregel benannt. Auch machte er die Optik zum Gegenstand wissenschaftlicher ...
Näherungsverfahren und Näherungslösungen | A.32
Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch ...
Quelle
Systematik
Schlagwörter
- Näherungsverfahren (5)
- Flächenberechnung (5)
- Analysis (5)
- E-Learning (5)
- Video (5)
- Kepler, Johannes (4)
- Keplersche Fassregel (4)