Hochpunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Hochpunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kurvendiskussion Beispiel 4e: Wendepunkte (Hochpunkt, Tiefpunkt) berechnen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.
Kurvendiskussion Beispiel 5e: Wendepunkte (Hochpunkt, Tiefpunkt) berechnen | A.19.05
Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 1 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 4 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 2 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 3 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Was bedeuten eigentlich die Funktionen in der Analysis? | A.11
In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man „x“ einsetzt erhält man verschiedene anschauliche Bedeutungen.
Wertebereich einer Funktion bestimmen, Beispiel 4 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Kurvendiskussion Beispiel 2b: Funktion auf Symmetrie untersuchen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.