Grundfläche - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Grundfläche - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...
Senkrechte quadratische Pyramide berechnen, Beispiel 4 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Senkrechte quadratische Pyramide berechnen | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen, Beispiel 2 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen, Beispiel 1 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 3 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)