Geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Prisma (Mathematik)
Ein Prisma ist eine dreidimensionale geometrische Figur. Um ein Prisma zu erhalten, findet die Parallelverschiebung eines n-Ecks (einer Fläche) statt.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 4 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 2 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Normale (Mathematik)
Die Normale ist eine Gerade, die in einem bestimmten Punkt senkrecht auf eine Funktion oder geometrische Figur steht.
Symmetrie (Mathematik)
Symmetrie eines Objektes liegt dann vor, wenn man das Objekt durch eine Kongruenzabbildung wieder auf sich selbst abbilden kann. Die geläufigsten Formen sind Achsensymmetrie und Punktsymmetrie.
Dreiecksfläche berechnen, Beispiel 4 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Extremwertaufgaben | A.21
Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.