Geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 2 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 4 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Figurierte Zahlen
Figurierte Zahlen sind Klassen von Zahlen, die sich als geometrische Figuren gleicher Art darstellen bzw. legen lassen. Dies bedeutet, dass sich mit einer bestimmten Anzahl von Plättchen eine bestimmte geometrische Figur legen lässt, aber eben auch, dass sich aus vorherigen solcher Figuren neue Figuren dieser Bauart legen lassen. Dieses aufeinanderfolgende Bauen von ...
Dreiecksfläche berechnen | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Quelle
Systematik
- Mathematik (90)
- Mathematisch-Naturwissenschaftliche Fächer (87)
- Grundschule (7)
- Geometrie (3)
- Zahlen (2)
- Fächerübergreifende Themen (2)
- Kombinieren (1)
Schlagwörter
- Geometrische Figur (87)
- E-Learning (78)
- Video (78)
- Funktion (Mathematik) (59)
- Analysis (59)
- Flächeninhalt (50)
- Geometrie (44)


