GAUSS-ELIMINATION - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

GAUSS-ELIMINATION - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Gauß'sches Eliminationsverfahren
Gaußsches Eliminationsverfahren. Theoretische Grundlagen und programmierte Realisierung. Facharbeit von Florian Michahelles, Abiturjahrgang 1992/1994, Werner-von-Siemens-Gymnasium Weißenburg/Bay. .Diese Facharbeit behandelt drei Verfahren zur Lösung linearer Gleichungssysteme. Im ersten werden zunächst die theoretischen Grundlagen der Verfahren dargelegt, im zweiten Teil ...
Wissenswertes über Carl Friedrich Gauß
Wissenswertes über Carl Friedrich Gauß finden Schülerinnen und Schüler auf dieser Seite.
Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02
Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von „x1“, „x2“, „x3“, .. bestimmen, welche zusammen den Lösungsvektor ...
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...