Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

So führt man eine Kurvendiskussion bzw. eine Funktionsanalyse Schritt für Schritt durch | A.19
Hier finden Sie ein paar Beispiele zur Funktionsanalyse von Funktionen (bzw. Kurvendiskussion). Nullstellen, Extrema, etc..
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse, Beispiel 1 | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse, Beispiel 2 | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.41.11
Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)
Kurvendiskussion Beispiel 1e: Wendepunkte berechnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 1c: Nullstellen berechnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 1a: Ableitungen bestimmen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 1f: Funktion zeichnen | A.19.01
Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.
Kurvendiskussion Beispiel 4e: Wendepunkte (Hochpunkt, Tiefpunkt) berechnen | A.19.04
Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.