Flächeninhalt Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Flächeninhalt Dreieck - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Übung: Flächeninhalt des Dreiecks
Auf dieser Seite von realmath.de können die Schülerinnen und Schüler die Flächeninhaltsberechnung bei Dreiecken einüben.
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 3 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 2 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 1 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Flächeninhalt Dreieck berechnen über A=1/2*g*h | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Dreieckskonstruktionen
Von dieser Seite von zum.de aus gelangt man zu vielen schönen Arbeitsblättern, die folgende Themen behaneln: Konstruktion von Dreiecken besondere Linien beim Dreieck Umkreis und Inkreis beim Dreieck Umfang und Flächeninhalt bei Dreieck
Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 1 | V.05.07
Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.
Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 2 | V.05.07
Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.
Flächeninhalt Dreieck berechnen über Kreuzprodukt | V.05.07
Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.
Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 3 | V.05.07
Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.