Entfernungen berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Entfernung berechnen, Beispiel 7 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 4 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 3 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 1 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 2 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 6 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Entfernung berechnen, Beispiel 5 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Betrag eines Vektors
Die Schülerinnen und Schüler lernen anhand von praktischen Vektoraufgaben, wie Entfernungen zwischen Punkten im Raum berechnet und die geometrischen Beziehungen zwischen diesen verstanden werden können. Dabei werden sowohl theoretische als auch anwendungsorientierte Aufgaben, wie die Positionsbestimmung eines Flugzeugs, behandelt.
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (9)
- Mathematik (9)
- Fachdidaktik (1)
- Fächerübergreifende Themen (1)
- Zahlen (1)
- Grundschule (1)
Schlagwörter
- Entfernungen (8)
- Streckenlänge (8)
- Entfernung (8)
- Abstand (8)
- Koordinatensystem (7)
- Gerade (Mathematik) (7)
- Koordinate (7)