Entfernung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Entfernung berechnen, Beispiel 7 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Die Entfernung der Supernova SN 1987A
Durch Vermessung und Analyse einer Lichtkurve des zirkumstellaren Rings wird die Entfernung von SN 1987A ermittelt (Sekundarstufe II).; Lernressourcentyp: Lernmaterial; Grafik (beschriftbar); Arbeitsblatt (druckbar); Lösungsblatt; Sachinformation; Projekt / Projektidee; Mindestalter: 15; Höchstalter: 18
Entfernung berechnen, Beispiel 4 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 3 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 2 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 1 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 6 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Entfernung berechnen, Beispiel 5 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Quelle
- Bildungsmediathek NRW (25)
- Lehrer-Online (11)
- Deutscher Bildungsserver (6)
- Bildungsserver Hessen (6)
- Handwerk macht Schule (1)
- LEIFIphysik (1)
- CONTAKE (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (46)
- Mathematik (32)
- Physik (17)
- Grundschule (12)
- Astronomie (11)
- Erde (11)
- Berufliche Bildung (11)
Schlagwörter
- Video (12)
- Entfernung (11)
- Koordinate (11)
- E-Learning (11)
- Physik (10)
- Abstand (9)
- Entfernung Punkt Gerade (8)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (11)
- Arbeitsblatt (6)
- Arbeitsmaterial (5)
- Video/animation (2)
- Werkzeug (1)
- Kurs (1)
- Interaktives Material (1)


