Dreiecke - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Dreiecke - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernpfad: Dreieck
In diesem Lernpfad von mathe-online.at erlernen die Schülerinnen und Schüler die Dreieckskonstruktionen, besondere Punkte im Dreieck und besondere Dreiecke. 
Trigonometrie - Arbeitsblätter
Arbeitsblätter zu folgenden Themen: Berechnung rechtwinkliger Dreiecke mit dem Sinus Berechnung rechtwinkliger Dreiecke mit Cosinus, Tangens und Cotangens Definition der Sinus- und Cosinusfunktion am Einheitskreis
Geometrie mit GeoGebra - Übersicht
  Stufenwinkel an parallelen Geraden  Wechselwinkel an parallelen Geraden   Innenwinkelsatz für Dreiecke   Aussenwinkelsatz für Dreiecke   Satz von Thales  Mittelpunktswinkelsatzetc.
Vom Satz der Kathete
Der Kathetensatz besagt, dass jeweils das Quadrat einer Kathete gleich dem Produkt des anliegenden Achsenabschnitts der Hypotenuse und der Hypotenuse selbst ist.
Ähnlichkeit
Auf dieser Seite von serlo.org werden folgende Begriffe schülernah erklärt: Ähnlichkeit, Ähnlichkeitsabbildung, Ähnliche Dreiecke und Ähnlichkeitssätze.
Ebene Flächen - Dreiecke
Auf dieser Seite finden Sie Grundlagen zum Thema Dreiecke: Beschriftung, Arten von Dreiecken, Flächenberechung, Umfangberechnung, Besondere Punkte, Eulersche Gerade uvm.
Satzgruppe des Pythagoras
Die hier vorgestellte Unterrichtseinheit basiert auf interaktiven Webseiten mit dynamischen GeoGebra-Applets. Sie schaffen Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und das Verständnis erleichtern.
Mathematik-digital/Kongruenz von Dreiecken
In dieser Unterrichtseinheit finden sich Fragen und Aufgaben rund um Dreiecke und deren Beziehungen untereinander. Der Begriff der Kongruenz wird selbstständig erarbeitet und auch eingeübt. Ergebnisse werden in einer Lernmappe festgehalten. Die Aufgaben lassen Möglichkeiten zur Differenzierung zu.
Fläche und Flächeninhalt eines Vierecks berechnen | A.03.05
Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu ...