Bernoulli - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette | W.14.01
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 2
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 3
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 1
Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 1 | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 4 | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 2 | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Quelle
- Bildungsmediathek NRW (12)
- Lehrer-Online (4)
- Deutscher Bildungsserver (3)
- Bildungsserver Hessen (3)
- LEIFIphysik (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (23)
- Mathematik (21)
- Stochastik (6)
- Fächerübergreifende Themen (4)
- Binomialverteilung (3)
- Zahlen (3)
- Fachdidaktik (3)
Schlagwörter
- Binomialverteilung (9)
- Bernoulli (6)
- Binomialverteilung Formel (5)
- Bernoulli-Formel (5)
- Binomialkoeffizient (5)
- Bernoulliverteilung (4)
- Bernoullikette (4)


