Ableitungsregeln - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02
Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.
Ableitung von komplizierten Wurzelfunktionen, Beispiel 3 | A.45.02
Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.
Ableitung von komplizierten Wurzelfunktionen, Beispiel 2 | A.45.02
Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.
Ableitung von komplizierten Wurzelfunktionen | A.45.02
Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.
Ableitung f(x) einer Funktion | A.13
Die Ableitung einer Funktion f(x) gibt die Steigung bzw. die Tangentensteigung an. Bei anwendungsbezogenen Aufgaben ist die Ableitung die Zunahme bzw. die Abnahme (je nach Vorzeichen). Es gibt drei wichtige Regeln für die Ableitung: Kettenregel, Quotientenregel, Produktregel. Mit allen kann man ableiten. Fast jeder Funktionstyp hat eine andere Ableitungsregel, d.h. man muss ...
Differentialgleichungen mit Ableitungsübungen für den Mathe-Unterricht
In der Einheit "Differentialgleichungen" betrachten und interpretieren die Lernenden die Zusammenhänge zwischen Werten und deren Veränderungen in Gleichungen. Bei den aufzustellenden Funktionstermen und Übungsaufgaben stehen Bezüge zur Realität im Mittelpunkt, um Ableitungsregeln zu üben und die Bedeutung von Ableitungen besser zu verstehen.
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (9)
- Mathematik (9)
- Differentiationsregeln (1)
- Differentialrechnung (1)
- Zuordnungen, Funktionen (1)
- Fachdidaktik (1)
- Fächerübergreifende Themen (1)
Schlagwörter
- Analysis (6)
- Ableitung (5)
- Funktion (Mathematik) (5)
- E-Learning (5)
- Video (5)
- Produktregel (4)
- Quotientenregel (4)