Ergebnis der Suche (10)

Ergebnis der Suche nach: (Freitext: WINKEL)

Es wurden 251 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Abbildungsgleichung der Drehung

    Auf dieser Seite von serlo.org wird die Abbildungsgleichung der Drehung um den Ursprung erklärt und anhand eines Beispiels eingeübt.

    Details  
    { "HE": [] }

  • Lernvideo von HilfreichTV: Punktspiegelung

    In diesem Lernvideo von HilfreichTV wird die Punktspiegelung anhand eines Dreiecks erklärt.

    Details  
    { "HE": [] }

  • Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008424" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 1 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009090" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 4 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009093" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 2 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009091" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009089" }

  • Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008425" }

  • Film-Hefte - Im toten Winkel - Hitlers Sektretärin

    Begleitheft zum Film Im toten Winkel. Im Mittelpunkt steht Traudl Junge, Jahrgang 1920, die von 1942 bis Kriegsende Sekretärin bei Adolf Hitler war.

    Details  
    { "BPB": "DE:SODIS:CP.BPB-00000189" }

  • Einführung der trigonometrischen Funktionen

    Die beiden in dieser Unterrichtseinheit verwendeten dynamischen GeoGebra-Arbeitsblätter können bei der Ein- und Fortführung des Themas in Klasse 9 beziehungsweise Klasse 10 eingesetzt werden.Zunächst lernen Ihre SchülerInnen Sinus, Cosinus und Tangens eines Winkels in rechtwinkligen Dreiecken kennen und berechnen fehlende Seiten und Winkel. Im Laufe der Unterrichtsreihe ...

    Details  
    { "HE": "DE:HE:113572" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite