Schnittpunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (7)
Ergebnis der Suche nach: (Freitext: SCHNITTPUNKT)
Es wurden 168 Einträge gefunden
- Treffer:
- 61 bis 70
-
Geraden einzeichnen, Beispiel 4 | A.02.01
Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit b, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). m ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008342" }
-
Schnittpunkt Kreis-Kreis berechnen, Beispiel 3 | V.06.03
Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010534" }
-
Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 2 | A.18.04
Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008951" }
-
Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 6 | A.18.04
Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008955" }
-
Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008512" }
-
Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 3 | A.22.03
Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009092" }
-
Rechnen können mit GTR / CAS - Abituraufgabe 1b | A.29.2
Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009276" }
-
Geradenschnitt: so löst man Gleichungen mit zwei Unbekannten, Beispiel 1 | G.02.05
Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem Linearen Gleichungssystem bzw. von einem 2x2 LGS. Eine mögliche Lösung des Problems wäre, beide Gleichungen nach y aufzulösen. Nun hat man zwei Gleichungen, die im Prinzip je eine Gerade darstellen. Die Lösung des LGS entspricht dem Schnittpunkt der beiden Geraden. Berechnet man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010049" }
-
Tangente an Parabel, Beispiel 1 | A.04.13
Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt Tangente. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008515" }
-
Tangente an Parabel | A.04.13
Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt Tangente. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008514" }