Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (7)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 61 bis 70
-
Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 3 | A.43.10
Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009536" }
-
Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.44.08
Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für x den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009575" }
-
Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 3 | A.43.01
Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009504" }
-
Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 1 | A.44.09
Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009577" }
-
Wertebereich einer Funktion bestimmen, Beispiel 1 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008645" }
-
Wertebereich einer Funktion bestimmen | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008644" }
-
Funktionen Schaubildern zuordnen, Beispiel 4 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009212" }
-
Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.44.09
Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009579" }
-
Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07
Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009608" }
-
Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse | A.44.09
Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009576" }