Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen | A.43.06 - kostenloses Unterrichtsmaterial online bei Elixier
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass man die größten Hochzahlen von Zähler und Nenner vergleicht und dabei vier Fälle unterscheidet. Schiefe Asymptoten betrachten wir im nächsten Unterkapitel.
Höchstalter:
15
Mindestalter:
10
Bildungsebene:
Kostenpflichtig:
nein
Lernressourcentyp:
Audiovisuelles Medium
Lizenz:
CC by-nc-ND
Schlagwörter:
Analysis Bruchrechnung Zähler E-Learning Video
freie Schlagwörter:
Funktion (Mathematik); Gebrochen-Rationale Funktion; Bruchfunktion; Bruch; Nenner; Waagerechte Asymptote; Senkrechte Asymptote; Schiefe Asymptote; Gerade (Mathematik)
Sprache:
de
Themenbereich:
Schule mathematisch-naturwissenschaftliche Fächer Mathematik
Geeignet für:
Schüler; Lehrer