Ergebnis der Suche
Ergebnis der Suche nach: (Freitext: STEREOMETRIE)
Es wurden 72 Einträge gefunden
- Treffer:
- 1 bis 10
-
Geometrie: Videos zu Längen, Flächen und Winkeln
In diesem Videokurs für den Geometrie-Unterricht erwerben die Schülerinnen und Schüler Basiskompetenzen in der Berechnung von Umfang, Flächeninhalt und Winkeln bei verschiedenen geometrischen Figuren.
Details { "LO": "DE:LO:de.lehrer-online.wm_000020" }
-
Mathe-Werkstatt
Homepage für Mathematik-Lehrer von einem Mathematik-Lehrer mit Überlegungen und Links zu Themen wie Ebene Geometrie, Raumgeometrie, Fraktale, Computeralgebra, Tabellenkalkulation, Analysis, Lineare Algebra, Abitur, Allgemeinbildung, Facharbeiten, Wettbewerbe, Lesetipps, Unmögliche Figuren, Humor, Didaktik, Lehrerfortbildung, Koedukation, Dyskalkulie und ...
Details { "DBS": "DE:DBS:1798" }
-
Gravitationswellen - Hintergrundinformationen und Filme
Laut Einsteins Allgemeiner Relativitätstheorie sind sie so gut wie unausweichlich, wenn Massen beschleunigt werden: Gravitationswellen, winzige Verzerrungen der Raumgeometrie, die sich mit Lichtgeschwindigkeit durch das All ausbreiten.; Lernressourcentyp: Lernmaterial; Animation; Unterrichtsidee; Mindestalter: 15; Höchstalter: 18
Details { "DBS": "DE:DBS:52845" }
-
HTML5-Apps zur Mathematik
Arithmetik, ebene Geometrie, Raumgeometrie, Kugelgeometrie, Trigonometrie, Vektorrechnung, analytische Geometrie
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00016053" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 3 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010334" }
-
Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel | T.06.07
Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010327" }
-
Quadratische Pyramide berechnen, Beispiel 2 | T.06.04
Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010325" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010332" }
-
Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 2 | T.06.10
Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010337" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010331" }