Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: SENKRECHT)

Es wurden 82 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Zwei zueinander senkrechte Ebenen (Mathematik)

    Wie man bestimmt, ob zwei Ebenen aufeinander senkrecht stehen hängt von der Form ab, in der sie gegeben sind. Normalform Sind zwei Ebenen in der Normalform gegeben, dann stehen sie aufeinander senkrecht , wenn ihre Normalvektoren aufeinander senkrecht stehen.

    Details  
    { "DBS": "DE:DBS:56078" }

  • Geradengleichung der Höhe berechnen, Beispiel 2 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008409" }

  • Geradengleichung der Höhe berechnen, Beispiel 3 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008410" }

  • Geradengleichung der Höhe berechnen, Beispiel 1 | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008408" }

  • Geradengleichung der Höhe berechnen | A.02.13

    Wie berechnet man die Gleichung einer Höhe? Eine Höhe steht senkrecht auf einer Dreiecksseite und geht durch den gegenüber liegenden Punkt. Dadurch, dass die Höhe senkrecht auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert, denn dadurch, dass beide senkrecht aufeinander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008407" }

  • Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 3 | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010496" }

  • Geometrie - Aufgaben online bearbeiten

    Zu den Bereichen Dreiecke, parallel-senkrecht, Würfelnetze, Formen sowie räumliches Zählen gibt es hier verschiedene Aufgaben für Schülerinnen und Schüler, die online bearbeitet werden können. Eine Rückmeldung geschieht nach jeder gelösten Aufgabe.

    Details  
    { "Mauswiesel.HE": "DE:Mauswiesel.HE:1209179" }

  • Skalarprodukt: so kann man Vektoren multiplizieren | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010493" }

  • Schnittwinkel zwischen Funktionen berechnen | A.22

    Die gegenseitige Lage von zwei Funktionen lässt sich auf zwei wichtige Sonderfälle zurückführen: 1.beide Funktionen berühren sich, 2.beide Funktionen stehen senkrecht aufeinander (sich orthogonal schneiden). Ist beides nicht der Fall, so gibt es irgendeinen Schnittwinkel. (Es kann natürlich auch sein, dass sich beide Funktionen GAR nicht schneiden, das ist aber ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009074" }

  • Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 1 | V.05.02

    Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010494" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite