Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ZÄHLER)

Es wurden 183 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 3 | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009832" }

  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009829" }

  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 2 | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009831" }

  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 1 | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009830" }

  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 5 | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009834" }

  • Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 4 | B.02.04

    Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt „Mal rechnen“). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009833" }

  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009505" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 4 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009963" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 3 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009962" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 1 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009960" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite