Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: STEREOMETRIE)

Es wurden 72 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Geometrie: Videos zu Längen, Flächen und Winkeln

    In diesem Videokurs für den Geometrie-Unterricht erwerben die Schülerinnen und Schüler Basiskompetenzen in der Berechnung von Umfang, Flächeninhalt und Winkeln bei verschiedenen geometrischen Figuren.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000020" }

  • Mathe-Werkstatt

    Homepage für Mathematik-Lehrer von einem Mathematik-Lehrer mit Überlegungen und Links zu Themen wie Ebene Geometrie, Raumgeometrie, Fraktale, Computeralgebra, Tabellenkalkulation, Analysis, Lineare Algebra, Abitur, Allgemeinbildung, Facharbeiten, Wettbewerbe, Lesetipps, Unmögliche Figuren, Humor, Didaktik, Lehrerfortbildung, Koedukation, Dyskalkulie und ...

    Details  
    { "DBS": "DE:DBS:1798" }

  • Gravitationswellen - Hintergrundinformationen und Filme

    Laut Einsteins Allgemeiner Relativitätstheorie sind sie so gut wie unausweichlich, wenn Massen beschleunigt werden: Gravitationswellen, winzige Verzerrungen der Raumgeometrie, die sich mit Lichtgeschwindigkeit durch das All ausbreiten.; Lernressourcentyp: Lernmaterial; Animation; Unterrichtsidee; Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52845" }

  • HTML5-Apps zur Mathematik

    Arithmetik, ebene Geometrie, Raumgeometrie, Kugelgeometrie, Trigonometrie, Vektorrechnung, analytische Geometrie

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00016053" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010327" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010333" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010339" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010331" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010338" }

  • Trigonometrie | Stereometrie

    Die Trigonometrie befasst sich mit der Berechnung von Längen und Winkeln in der Ebene (daher heißt die Trigonometrie auch „Planimetrie“). Üblicherweise erfolgen diese Berechnung mit Hilfe des Satzes von Pythagoras, mit Sinus, Kosinus (teils auch Cosinus), Tangens und anderen trigonometrischen Hilfsmitteln. Eine Einführung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010276" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite