Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ROTATION)

Es wurden 34 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Rotationsvolumen berechnen, Beispiel 6 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008969" }

  • Rotationsvolumen berechnen, Beispiel 5 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008968" }

  • Rotationsvolumen berechnen, Beispiel 4 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008967" }

  • Rotationsvolumen berechnen, Beispiel 3 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008966" }

  • Rotationsvolumen berechnen, Beispiel 2 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008965" }

  • Rotationsvolumen berechnen | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008963" }

  • Rotationsvolumen berechnen, Beispiel 1 | A.18.06

    Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008964" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 1

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009266" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 3

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009268" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 2

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009267" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite