Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: KREISGLEICHUNG)

Es wurden 13 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Kreisgleichung, Beispiel 1 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010524" }

  • Kreisgleichung | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010523" }

  • Kreisgleichung, Beispiel 2 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010525" }

  • Kreisgleichung, Beispiel 3 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010526" }

  • Kreis und Kugel berechnen mit Kreisgleichung und Kugelgleichung | V.06

    Eine Kreisgleichung lautet: (x1-m1)^2+(x2-m2)^2=r^2 und eine Kugelgleichung lautet: (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2. Man kann ganz viele, lustige Sachen damit machen. Bemerkung: Ein Kreis oder eine Kugel ist in Mathe immer ein Hohlkreis bzw. eine Hohlkugel (das Innere gehört also nie dazu).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010522" }

  • Schnittpunkt Gerade-Kreis berechnen, Beispiel 2 | V.06.02

    Schnitt Gerade Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010529" }

  • Schnittpunkt Gerade-Kreis berechnen, Beispiel 3 | V.06.02

    Schnitt Gerade Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010530" }

  • Schnittpunkt Gerade-Kugel berechnen, Beispiel 1 | V.06.08

    Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010552" }

  • Schnittpunkt Gerade-Kugel berechnen, Beispiel 2 | V.06.08

    Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010553" }

  • Schnittpunkt Gerade-Kugel berechnen, Beispiel 3 | V.06.08

    Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010554" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite