Ergebnis der Suche
Ergebnis der Suche nach: (Freitext: KOSINUS)
Es wurden 113 Einträge gefunden
- Treffer:
- 1 bis 10
-
Aufgabe zur Veranschaulichung von Sinus und Kosinus am Einheitskreis
Sinus und Kosinus lassen sich mit Hilfe des Einheitskreises für beliebige Winkel definieren. Diese (erweiterte) Definition schließt die (alte) Definition am rechtwinkligen Dreieck mit ein. Die hier angebotene Seite beinhaltet Aufgaben zur (dynamischen) Veranschaulichung von Sinus und Kosinus am Einheitskreis. Die Aufgaben können online bearbeitet werden. Auch ein Download ...
Details { "HE": "DE:HE:969864" }
-
Sinus, Kosinus und Tangens
Eine Einführung der Sinus-, Kosinus-,Tangensfunktion mithilfe eines Java-Applets (Klasse 9 und 10).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14
Details { "DBS": "DE:DBS:52539" }
-
Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01
Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009202" }
-
Trigonometrische Funktionen: Ableitung | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009467" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009468" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009470" }
-
Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009469" }
-
Trigonometrie - Arbeitsblätter
Details { "HE": "DE:HE:113573" }
-
Trigonometrie | Stereometrie
Die Trigonometrie befasst sich mit der Berechnung von Längen und Winkeln in der Ebene (daher heißt die Trigonometrie auch Planimetrie). Üblicherweise erfolgen diese Berechnung mit Hilfe des Satzes von Pythagoras, mit Sinus, Kosinus (teils auch Cosinus), Tangens und anderen trigonometrischen Hilfsmitteln. Eine Einführung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010276" }
-
Sinus, Kosinus und Tangens (Mathematik)
Die Winkelfunktionen Sinus, Kosinus und Tangens sind die wichtigsten trigonometrischen Funktionen. Dieser Artikel erklärt an Beispielen, wie man diese Funktionen berechnen kann, was Gegenkathete, Hypotenuse und Ankathete sind und welche Rechenregeln es gibt.
Details { "Serlo": "DE:DBS:55956" }