Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: KEGEL)

Es wurden 28 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010338" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 2 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010337" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 1 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010336" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010335" }

  • Kegel (Mathematik)

    Ein Kegel ist ein Körper, der durch verbinden aller Punkte auf einer Kreislinie mit einem Punkt außerhalb der Kreisebene, ensteht.

    Details  
    { "DBS": "DE:DBS:55954" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010339" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen, Beispiel 3 | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010342" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen, Beispiel 1 | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010340" }

  • Kegel, Kegelstumpf, Mantelfläche berechnen, Beispiel 2 | T.06.11

    Einen Kegelstumpf erhält man, indem man von einem Kegel die Spitze parallel zur Grundfläche abschneidet. Das Volumen berechnet man über die Differenz zwischen kleinen und großen Kegel, die Oberfläche besteht aus den beiden Grundkreisen und der Mantelfläche. Formeln verwenden und gut ist´s.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010341" }

  • Kegel - Volumen

    Der Kurzfilm erläutert die Volumenberechnung eines Kegels.

    Details  
    { "LO": "DE:LO:de.lehrer-online.2000545" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite