Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: QUADRATISCHE und GLEICHUNGEN)

Es wurden 109 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 1 | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010087" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 3 | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010089" }

  • Quadratische Gleichungen mit der Form ax²+c=0 lösen | G.04.05

    Eine quadratische Gleichung, in welcher das „x“ fehlt heißt „reinquadratisch“. (Wir reden hier also von einer Gleichung der Form „ax²+c=0“). Diese Gleichung löst man einfach nach „x“ auf. Man bringt also das „c“ rüber, teilt durch „a“ und zieht die Wurzel. (nicht vergessen: es gibt eine „Plus“-Lösung UND eine „Minus“-Lösung!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010086" }

  • Quadratische, kubische und Gleichungen 4.Grades

    Lösungen quadratischer und kubischer Gleichungen in der geschichtlichen Entwicklung ab der Zeit der Babylonier

    Details  
    { "DBS": "DE:DBS:7045" }

  • Quadratische Ergänzung (Mathematik)

    Die quadratische Ergänzung ist eine Technik, um einen quadratischen Term umzuformen.

    Details  
    { "Serlo": "DE:DBS:55989" }

  • biquadratische Gleichungen lösen

    In diesem YouTube-Lernvideo wird ausführlich erklärt, wie man biquadratische Gleichungen, Bruchgleichungen und Wurzelgleichungen löst.

    Details  
    { "Select.HE": "DE:Select.HE:1634479" }

  • Gleichungen höheren Grades


    Details  
    { "Select.HE": "DE:Select.HE:1634476" }

  • p-q-Formel, Mitternachtsformel, Beispiel 6 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008713" }

  • p-q-Formel, Mitternachtsformel, Beispiel 7 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008714" }

  • p-q-Formel, Mitternachtsformel, Beispiel 8 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008715" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite