Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GANZE und ZAHLEN)

Es wurden 68 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Ganze Zahlen - Grundrechenarten verbinden und anwenden

    Die Grundrechenarten Addition, Subtraktion, Multiplikation und Division werden miteinander in Beziehung gesetzt und mithilfe interaktiver Arbeitsblätter trainiert (Klasse 6-7).; Lernressourcentyp: Selbstlerneinheit; Software (Anwendung oder Lehr- und Lernsoftware); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:53783", "LO": "DE:SODIS:de.lehrer-online.804576" }

  • Matrizen und LGS

    Die gängige Abkürzung für „Lineares GleichungsSystem“ ist „LGS“. Läßt man in einem LGS die Buchstaben der Unbekannten weg und schreibt nur die Zahlen auf, nennt man das Ganze „Matrix“ (bzw. mehrere „Matrizen“). Eine Einführung

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010132" }

  • Prozent (Mathematik)

    Prozentangaben dienen dazu, auszudrücken, wie groß der Anteil eines Teils des Ganzen am gesamten Ganzen ist. Grundgedanke ist dabei, dass man sich das Ganze in Hundertstel aufgeteilt denkt. Ein Prozent ist dann ein Hundertstel des Ganzen.

    Details  
    { "DBS": "DE:DBS:55987" }

  • Multiplikation (Mathematik)

    Die Multiplikation, ist eine der vier Grundrechenarten. In der Umgangssprache verwendet man meist den Ausdruck "mal nehmen" für die Multiplikation von zwei oder mehr Zahlen. Die Elemente einer Multiplikation heißen Faktoren, das Ergebnis heißt Produkt.

    Details  
    { "DBS": "DE:DBS:55993" }

  • Programme zur Schulmathematik

    Das Programm "Rechnen ab 5´´ ist ein Kopfrechnentrainer zu den vier Grundrechenarten. Die Programme Klammern 5_1, 5_2, 7_1 und 7_2 behandeln die vier Grundrechenarten mit ganzen und natürlichen Zahlen und sind kostenlos in der Vollversion (Shareware) von der Seite abrufbar. Die Ausstattung aller 4 Programme ist identisch bis auf die Zahlenbereiche und ...

    Details  
    { "DBS": "DE:DBS:10512" }

  • Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010828" }

  • Partialbruchzerlegung, Beispiel 3 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008859" }

  • Moivre-Laplace Näherungsformel | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010825" }

  • Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010827" }

  • Partialbruchzerlegung, Beispiel 6 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008862" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite