Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: ZAHLENTHEORIE)

Es wurden 24 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Primfaktorzerlegung | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009987" }

  • Zahlentheorie in der Schule

    Zahlentheorie in der Schule - "Von Primzahlen zur Verschlüsselung mit RSA´´. Skript zu einer zwölfstündigen Unterrichtseinheit mit zahlreiche Aufgabenstellungen.

    Details  
    { "DBS": "DE:DBS:9641" }

  • Zahlentheorie: was ist das und wofür braucht man das überhaupt? | B.10

    Die Zahlentheorie befasst sich mit den unterschiedlichsten Eigenschaften von Zahlen. Üblicher Weise versteht man unter Zahlentheorie auch viel kompliziertere Dinge als wir hier machen, so dass Sie eventuell etwas anderes finden, als Sie suchen. Sie finden in diesem Kapitel die Vorgehensweisen zu: 1. den Teilbarkeitsregeln, 2. der Primfaktorzerlegung, 3. dem ggT (größter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009981" }

  • Primfaktorzerlegung, Beispiel 4 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009991" }

  • Primfaktorzerlegung, Beispiel 3 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009990" }

  • Primfaktorzerlegung, Beispiel 2 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009989" }

  • Primfaktorzerlegung, Beispiel 1 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009988" }

  • Idempotente Zahlen - Unterrichtseinheit

    Bei der Suche nach idempotenten Zahlen werden vielfältige algebraische und zahlentheoretische Zusammenhänge, wie etwa der Chinesische Restsatz und seine Anwendungsmöglichkeiten, entdeckt.

    Details  
    { "DBS": "DE:DBS:40826" }

  • Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt

    Potenzregeln, Wurzeln, Ausklammern, binomische Formel, wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009785" }

  • Kleinstes gemeinsames Vielfaches kgV und wie man es bestimmt, Beispiel 3 | B.10.04

    Um das kleinste gemeinsame Vielfache (kgV) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen oder nicht gemeinsamen Primfaktoren zur höchsten Potenz, in der sie vorkommen. Das Produkt davon ist das kgV.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009999" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite