Vektor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: VEKTOR)

Es wurden 95 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Frida: Freie Vektor-Geodaten Osnabrück

    Hauptziel war es, für eine europäische Stadt Vektor-Geodaten zu erzeugen und als Freie Geodaten allen Interessierten zur Verfügung zu stellen.

    Details  
    { "HE": "DE:HE:112213" }

  • Lernvideo: Skalarmultiplikation

    In diesem Video von echteinfach.tv wird sehr anschaulich gezeigt, wie man einen Skalar (eine Zahl) mit einem Vektor multipliziert,  es wird also eine sogenannte ʺSkalarmultiplikationʺ durchgeführt. Auch erfährt man im Video, warum man die Zahl ʺSkalarʺ nennt.

    Details  
    { "HE": [] }

  • Vektor (Mathematik)

    Der Vektor bezeichnet eine Verschiebung und wird repräsentiert durch jeden Pfeil, dessen Länge und dessen Richtung gerade die Länge und die Richtung der betreffenden Verschiebung ist.

    Details  
    { "DBS": "DE:DBS:55960" }

  • Vektor zwischen zwei Punkten berechnen

    Um den Verbindungsvektor zwischen zwei Punkten A und B zu berechnen muss man den Ortsvektor zu Punkt A vom Ortsvektor zu Punkt B subtrahieren.

    Details  
    { "DBS": "DE:DBS:56061" }

  • Kreuzprodukt, Vektorprodukt

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle wird die Operation des Kreuzproduktes erklärt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004625" }

  • Skalarmultiplikation


    Details  
    { "Select.HE": "DE:Select.HE:1711934" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Linearkombination

    Eine Linearkombination von Vektoren ist eine Summe von Vektoren (Vektoraddition) , wobei jeder Vektor noch mit einer (reellen) Zahl (Linearfaktor) multipliziert wird. Das Ergebnis davon ist wieder ein Vektor.

    Details  
    { "DBS": "DE:DBS:56167" }

  • Einführung in die Vektoralgebra

    Hier finden Sie eine kurze Einführung in die Vektoralgebra. Grundlagen (wie z.B. Unterschied Skalar - Vektor, Ortsvektor, Länge eines Vektors, Vektoren in der Ebene und im Raum) werden hier in einfachen Schritten erklärt.

    Details  
    { "DBS": "DE:DBS:37851" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite