Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: TETRAEDER)

Es wurden 14 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • DITOH - Platonische Körper

    Dieser spezielle, reguläre Polyeder eignet sich für jedes Alter und offenbart dem Betrachter die Zusammenhänge der platonischen Körper - Tetraeder, Hexaeder (Würfel), Oktaeder, Dodekaeder und Ikosaeder. Dieser Polyeder eignet sich ausgezeichnet für den Unterricht.

    Details  
    { "DBS": "DE:DBS:59554" }

  • DynaGeo: Tetraeder mit Netz

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002901" }

  • Steinkohle. Entstehung, Gewinnung, Verwendung - Tetraeder in Bottrop


    Details  
    { "MELT": "DE:SODIS:MELT-04602170.15" }

  • DynaGeo: Tetraeder mit variablen Schnittflächen an den Ecken

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002902" }

  • Volumen dreiseitige Pyramide berechnen | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010601" }

  • Perlen und Formeln

    Bei dieser Aufgabe geht es darum, den binomischen Satz von Newton und damit verbundene Konzepte (Kombinationen, Pascalsches Dreieck) nach dem Ansatz des forschenden Lernens zu vermitteln, indem man die Verbreitung eines Gerüchts modelliert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00015244" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 2 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010607" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 3 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010608" }

  • Volumen dreiseitige Pyramide berechnen, Beispiel 1 | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010602" }

  • Volumen dreiseitige Pyramide berechnen, Beispiel 2 | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010603" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite